DATA ACQUISITION MODULES

产品说明

R4017 模块用户手册

2005年8月

http://www.sa68.com info@sa68.com

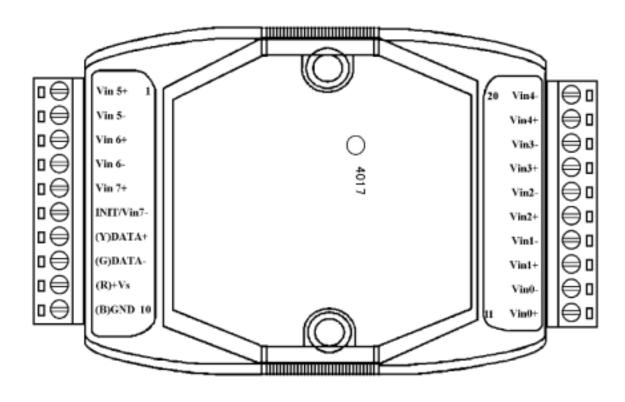
北京捷麦通信器材有限公司

目录

概	述	. 2
1.1	端子分布	. 2
1.2	特性	3
1.3	结构图	3
1.4	接线说明	4
	*· 	
2.4	\$AAM 1	11
2.5	~AAO(数据)	11
2.6	~AAEV	12
2.7	\$AA1	13
2.8	\$AA0	13
	•	
	•	
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 2.7 2.1 2.2 3.1 3.2	株正 1.1 端子分布 1.2 特性 1.3 结构图 1.4 接线说明 1.5 默认设置 1.6 跳线设置 1.7 校准 1.8 设置列表 指令 2.1 %AANNTTCCFF 2.2 \$AA2 2.2 \$AAF 2.4 \$AAM 2.5 ~AAO(数据) 2.6 ~AAEV 2.7 \$AA1 2.8 \$AA0 2.9 #AA 2.10 \$AAA 2.10 \$AAA 2.11 \$AA5VV 2.11 \$AA5VV 2.12 \$AA6 2.13 #AAN 2.14 *** 2.15 ~AA3EVV 2.14 *** 2.15 ~AA3EVV 2.17 ~AA2 2.18 ~AA1 2.18 ~AA1 2.11 *** 2.15 ~AA3EVV 2.16 ~AA0 2.17 ~AA2 2.18 ~AA1 2.17 ~AA2 2.18 ~AA1 2.18 ~AA1 2.17 ~AA2 2.18 ~AA1 2.18 ~AA1 3.3 双重看门狗操作

1. 概述

R4000是具有网络数据采集和控制功能的一系列模块。它们提供模拟到数字,数字到模拟,数字输入/输出,定时器/计数器和其他的功能。这些模块由一系列指令远程控制完成。


R4017是含有8通道的模拟量输入模块。特征如下:

1000VDC 隔离模拟量输入

24位sigma-delta ADC来提供较高的精度

软件校准

1.1 端子分布

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

1.2 特性

R4017模拟输入

输入通道: 8路或6路差分, 2路单端。跳线选择

模拟输入类型: mV, V, mA(外带125 ohms 电阻)

采样速率: 10 样本/秒

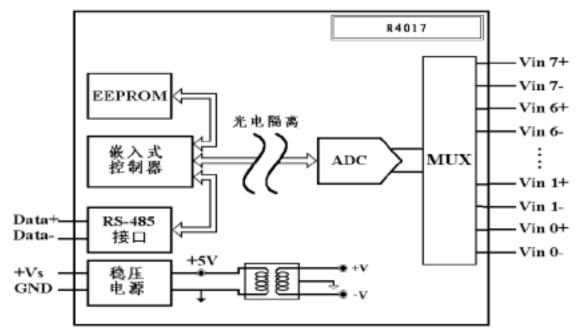
带宽: 15.7 Hz

精度: ±0.1%

零漂移: 20μV/°C

量程漂移: 25ppm/℃

CMR: 86dB

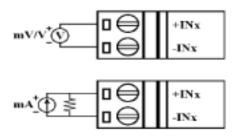

输入阻抗: 20M 0hms 过载电压保护: ±35V

隔离: 1000VDC

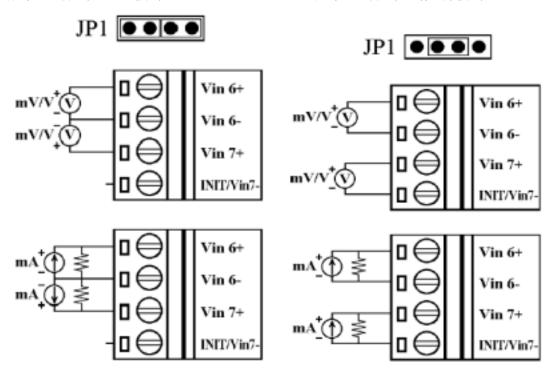
供应功率 输入: +10到+30 VDC

功耗: 1.3W

1.3 结构图



北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504


电传:(010)63331035--37 网址:<u>http://www.sa68.com</u>

1.4 接线说明

R4017 模拟量输入 通道0到5的接线说明

R4017 模拟输入通道6和7的接线说明, 跳线JP1 设置在INIT*模式 **R4017** 模拟输入通道6和7的接线说明 跳线JP1 设置在8路差分模式

1.5 默认设置

R4017 的默认设置:

地址: 01

模拟输入类型: 类型08, -10到+10V

波特率: 9600 bps

总效验禁止, 抑制60Hz干扰, 工程量单位格式

R4017设置在6路差分,2路单端模式

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

1.6 跳线设置

R4017: 跳线JP1 选择端子INIT*/Vin 7-

选择8路差分模式, 端子INIT*/Vin7- 设置成Vin7-

JP1 **●●●**

选择6路差分,2路单端模式(INIT*模式),端子INIT*/Vin7-设置成INIT*

JP1 ••••

1.7 校准

如果您还没有真正理解校准含义,请先不要执行校准 R4017的校准需求。

当校准类型0D时,需要连接外部的电阻,125 ohms, 0.1%

代码类型	08	09	0A	0B	0C	0D
0输入	0V	0V	0V	0mV	0mV	0mA
满量程输入	+10V	+5V	+1V	+500mV	+150mV	+20mA

校准步骤:

- 1 将校准电压/电流连接到模块的输入端,连接到通道0。
- 2 预热30分钟。

3 设置类型为08。 ->%AANNTTCCFF

4 开启校准 ->~AAEV

5 给定零校准电压。

6 执行零校准指令。 ->\$AA1

7 给定满量程校准电压。

8 执行满量程校准指令。 ->\$AAO

9 重复步骤4到8三次。

1.8 设置列表

波特率设置(CC)

代码	03	04	05	06	07	08	09	0A
波特率	1200	2400	4800	9600	19200	38400	57600	115200

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

电传:(010)63331035--37 网址:<u>http://www.sa68.com</u>

模拟输入类型设置(TT)

类型代码	08	09	0A	0B	0C	0D
最小输入	-10V	-5V	-1V	-500mV	-150mV	-20mA
最大输入	+10V	+5V	+1V	+500mV	+150mV	+20mA

数据格式设置(FF)

7	6	5	4	3	2	1	0
*1	*2	0	0	0	0	*	3

*1: 滤波器选择: 0 = 60Hz 抑制

1 = 50Hz 接收

*2: 校验位: 0=禁止, 1=允许

*3: 00=工程量单位格式

01=百分比格式

10=16进制补码格式

模拟量输入类型及数据格式表

类型代码	输入范围	数据格式	正幅值	零点	负幅值
		工程单位	+10.000	+00.000	-10.000
08	-10到+10V	百分比格式	+100.00	+000.00	-100.00
		16进制补码	7FFF	0000	8000
		工程单位	+5.0000	+0.0000	-5.0000
09	-5到+5V	百分比格式	+100.00	+000.00	-100.00
		16进制补码	7FFF	0000	8000
		工程单位	+1.0000	+0.0000	-1.0000
OA	-1到+1V	百分比格式	+100.00	+000.00	-100.00
		16进制补码	7FFF	0000	8000
	-500到+500 mV	工程单位	+500.00	+000.00	-500.00
ОВ		百分比格式	+100.00	+000.00	-100.00
		16进制补码	7FFF	0000	8000
	-150至J+150 mV	工程单位	+150.00	+000.00	-150.00
OC		百分比格式	+100.00	+000.00	-100.00
		16进制补码	7FFF	0000	8000
	20 <u>5</u> 1 - 20	工程单位	+20.000	+00.000	-20.000
OD	-20到+20 mA	百分比格式	+100.00	+000.00	-100.00
		16进制补码	7FFF	0000	8000

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

2. 指令

指令格式: (第一位)(地址)(指令)[CHK](cr) 响应格式: (第一位)(地址)(数据)[CHK](cr)

[CHK] 2字符效验

(cr) 指令结束符,返回字符(0x0D)

计算校验和:

- 1.除了cr字符,计算所有指令(或响应)字符串的ASCII总和。
- 2. 将字符串总和标记为0ffh.

例如:

带校验的指令字符串为: \$012B7(cr)

字符串总和= '\$'+'0'+'1'+'2' = 24h+30h+31h+32h = B7h

校验和是B7h, [CHK] = "B7"

带校验的响应字符串: ! 01080640B4 (cr)

字符串总和: '!'+'0'+'1'+'0'+'8'+'0'+'6'+'4'+'0'

= 21h+30h+31h+30h+38h+30h+36h+34h+30h = 1B4h

校验和是B4h, [CHK] = "B4"

地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

R4017 模块用户手册

通用指令集						
指令	响应	描述				
%AANNTTCCFF	!AA	设置模块信息				
\$AA2	!AATTCCFF	读配置信息				
\$AAF	!AA(数据)	读版本信息				
\$AAM	!AA(数据)	读模块名				
~AAO(数据)	!AA	设置模块名				

模拟量测量指令设置					
指令	响应	描述			
~AAEV	!AA	校准允许/禁止			
\$AA1	!AA	执行零校准			
\$AA0	!AA	执行量程校准			
#AA	>(数据)	读模拟量输入			
\$AAA	!(数据)	读8通道数据			
\$AA5VV	!AA	设置通道允许			
\$AA6	!AAVV	读通道状态			
#AAN	>(数据)	从通道N读模拟输入			

主机看门狗指令集					
指令	响应	描述			
~**	无响应	主机正常			
~AA3EVV	!AA	设置主机看门狗溢出时间			
~AA0	!AASS	读主看门狗状态			
~AA2	!AAVV	读主机看门狗溢出时间			
~AA1	!AA	复位主看门狗状态			

2.1 %AANNTTCCFF

描述:设置模块配置

语法: %AANNTTCCFF[CHK](cr)

% 字符分隔符

AA 设置模块地址(00到FF)

NN 设置模块新地址(00到FF)

TT 设置模块新类型

CC 设置模块新波特率

FF 设置模块新的数据格式

当转换波特率或效验和时,将INIT*端子接地。

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符。当转换波特率或效验和时没有将INIT*接地的

话,模块将会返回无效指令。

AA 响应模块地址(00到FF)

例如:

指令: %0102080600 接收: !02

转换地址从01到02, 返回成功.

指令: %0202080642 接收: !02

转换数据格式从01到02, 返回成功.

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

2.2 \$AA2

描述:读配置信息

语法: \$AA2[CHK](cr)

\$字符分隔符

AA 读模块地址(00到FF)

2 读配置指令

响应: 有效指令: !AATTCCFF[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

TT 模块类型代码

CC 模块波特率代码

FF 模块数据格式

例如:

指令: \$012 接收: !01080600

读地址为01的配置信息,返回模式为08,波特率9600,无校验,**工程量**单位。

指令: \$002 接收: !020A0702

INIT模式下,读模块配置信息,返回地址为02,模式为0A,波特率9600, 无校验,16**进制**单位。

2.3 **\$AAF**

描述:读版本信息

语法: \$AAF[CHK](cr)

\$字符分隔符

AA 读模块地址(00到FF)

F 读版本指令

响应: 有效指令: !AA(数据)[CHK](cr)

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 有效指令分隔符

AA 响应模块地址(00到FF)

(数据) 模块的版本

例如:

指令: \$01F 接收: !01BBA1

读地址为01的版本数据, 返回版本BBA1.

2.4 \$AAM

描述:读模块名称

语法: \$AAM[CHK](cr)

\$字符分隔符

AA 读模块地址(00到FF)

M 读模块名称指令

响应: 有效指令: !AA(数据)[CHK](cr)

无效指令:?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

(数据) 模块名称

例如:

指令: \$01M 接收: !014017

读地址为01的模块名, 返回名称4017.

2.5~AAO(数据)

描述:设置模块名称

语法: ~AAO(数据)[CHK](cr)

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

~ 字符分隔符

AA 设置模块地址(00到FF)

O 设置模块名称的指令

(数据)模块的新名称,最大4字符。

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 有效指令分隔符

AA 响应模块地址(00到FF)

例如:

指令: ~01O4012 接收: !01

设置地址为01的模块名到4012. 返回成功.

指令: \$01M 接收: !014012

读地址为01的模块名, 返回4012.

2.6 ~AAEV

描述:校准允许/禁止

语法: ~AAEV[CHK](cr)

~ 字符分隔符

AA 设置模块地址(00到FF)

E 校准允许/禁止指令

V 1=校准允许, 0=校准禁止

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 有效指令分隔符

AA 响应模块地址(00到FF)

例如:

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

R4017 模块用户手册

指令: \$010 接收: ?01

执行地址为01的范围校准, 返回没有准备好校准。

指令: ~01E1 接收: !01

设置地址为01的校准允许, 返回成功.

指令: \$010 接收: !01

执行地址为01的范围校准,返回成功.

2.7 \$AA1

描述:执行零点校准

语法: \$AA1[CHK](cr)

\$字符分隔符

AA 设置模块地址(00到FF)

1 执行零点校准指令

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符或校准没有启动

AA 响应模块地址(00到FF)

例如:

指令: \$011 接收: !01

执行地址为01的零点校准,返回成功.

指令: \$021 接收: ?02

执行地址为02的零点校准,返回执行校准指令前不能执行校准功能。

2.8 \$AA0

描述:执行范围校准

语法: \$AA0[CHK](cr)

\$字符分隔符

AA 设置模块地址(00到FF)

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

0 执行范围校准指令

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符或校准没有启动

AA 响应模块地址(00到FF)

例如:

指令: \$010 接收: !01

执行地址为01范围校准,返回成功。.

指令: \$020 接收: ?02

执行地址为02范围校准指令,返回执行校准指令前,不能执行校准功能。

2.9 #AA

描述: 读模拟输入

语法: #AA[CHK](cr)

字符分隔符

AA 读模块指令(00到FF)

响应: 有效指令: >(数据)[CHK](cr)

语法错误或通信错误会导致无响应。

> 有效指令分隔符

(数据) 模拟输入值,

例如:

指令:#04

接收: >+05.123+04.153+07.234-02.356+10.000-05.133+02.345+08.234

2.10 \$AAA

描述:读8通道数据

语法: \$AAA[CHK](cr)

\$字符分隔符

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

AA 读模块地址(00到FF)

A 读8通道模拟输入数据指令

响应: 有效指令: >(数据1)..(数据8)[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应.

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

(数据1)..(数据8) 8通道模拟输入数据, 16进制补码格式

例如:

指令: \$01A

接收: >0000012301257FFF1802744F98238124 读地址为01的8通道模拟输入数据, 返回成功.

2.11 \$AA5VV

描述:设置单通道测量允许

语法: \$AA5VV[CHK](cr)

\$字符分隔符

AA 设置模块地址(00到FF)

5 设置通道工作指令

VV 通道的允许/禁止, 00=禁止, FF=允许。

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

例如:

指令: \$0155A 接收: !01

设置地址01通道1,3,4,6允许,通道0,2,5,7禁止,返回成功.

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

指令: \$016 接收: !015A

读地址01通道状态,返回通道1,3,4,6允许,通道0,2,5,7禁止。

2.12 \$AA6

描述:读单通道测量状态

语法: \$AA6[CHK](cr)

\$字符分隔符

AA 读模块地址(00到FF)

6 读通道状态指令

响应: 有效指令: !AAVV[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

VV 通道允许/禁止,00=禁止所有通道,FF=开启所有通道。

例如:

指令: \$015A5 接收: !01

设置地址01通道0,2,5,7允许,通道1,3,4,6禁止,返回成功.

指令: \$016 接收: !01A5

读地址01通道状态,返回通道0,2,5,7允许,通道1,3,4,6禁止。

2.13 #AAN

描述:由通道N读模拟量输入

语法: #AAN[CHK](cr)

字符分隔符

AA 读模块地址(00到FF)

N 读通道,从0到7

响应: 有效指令: >(**数据**)[CHK](cr)

无效指令: ?AA[CHK](cr)

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

语法错误或通信错误会导致无响应。

> 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

(数据) 模拟输入值,

例如:

指令: #032 接收: >+02.513

读地址为03,通道2,成功得到数据。

指令: #029 接收: ?02

读地址为02,通道9,返回错误通道名

2.14 ~**

描述: 主机正常.

主机发送信息"主机正常"给所有模块

语法: ~**[CHK](cr)

~ 字符分隔符

** 给所有模块的指令

响应: 无响应.

例如:

指令: ~** 无响应

发送主机正常给所有模块。

2.15 ~AA3EVV

描述:设置主看门狗溢出时间

语法: ~AA3EVV[CHK](cr)

~ 字符分隔符

AA 设置模块地址(00到FF)

3 设置主看门狗溢出时间指令

E 主机看门狗1=开启/0=关闭

VV 溢出时间,从01到FF,每个数字代表0.1 秒

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

电传:(010)63331035--37

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

例如:

指令: ~013164 接收: !01

设置地址为01的主看门狗启动,且溢出时间为64(10.0秒),返回成功。

指令: ~012 接收: !0164

读地址为01的主看门狗溢出时间, 返回溢出时间为64 (10.0 秒).

2.16 ~AA0

描述:读主看门狗状态

语法: ~AA0[CHK](cr)

~ 字符分隔符

AA 读模块地址(00到FF)

0 读主看门狗状态指令

响应: 有效指令: !AASS[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

SS 主看门狗状态 00=清除,04=设置。状态将存储到EEPROM中,

且只有指令~AA1可以复位。

例如:

指令: ~010 接收: !0100

读地址为01的状态, 返回00。

指令: ~020 接收: !0204

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

读地址为02的主看门狗状态,返回04,意味着主看门狗溢出状态被设置。

$2.17 \sim AA2$

描述:读主看门狗超时间隔

语法: ~AA2[CHK](cr)

~ 字符分隔符

AA 读模块地址(00到FF)

2 读主看门狗超时间隔指令

响应: 有效指令: !AAVV[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

AA 响应模块地址(00到FF)

VV 超时间隔用16进制表示,每个计数0.1秒。01=0.1秒,FF=25.5秒。

例如:

指令: ~012 接收: !01FF

读地址为01的主看门狗超时间隔,返回FF,主看门狗超时间隔为25.5秒.

2.18 ~AA1

描述:复位主看门狗状态

语法: ~AA1[CHK](cr)

~ 字符分隔符

AA 设置模块地址(00到FF)

1 复位主看门狗状态指令

响应: 有效指令: !AA[CHK](cr)

无效指令: ?AA[CHK](cr)

语法错误或通信错误会导致无响应。

! 有效指令分隔符

? 无效指令分隔符

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

AA 响应模块地址(00到FF)

例如:

指令: ~010 接收: !0104

读地址为01的主看门狗状态,返回04,主看门狗溢出标志被设置。

指令: ~011 接收: !01

复位地址为01的主看门狗状态, 返回成功.

指令: ~010 接收: !0100

读地址为01的主看门狗状态, 返回00, 模块状态被清除。

3. 应用注意

3.1 INIT* 端子操作

每个R4000模块都内嵌了一块EEPROM来存储配置信息如地址,信号类型,波特率以及其他参数。有时,用户可能会忘记模块的配置信息。因此,R4000 有一个特殊的模式叫做"INIT 模式",可以用来帮助用户解决这样的问题。在R4017中由跳线JP1来选择INIT/VIN7端的功能,在"INIT 模式"下,模块被强行设置为地址=00,波特率=9600bps,无校验位。

为了激活INIT模式,请参考如下步骤:

步骤1. 关闭电源

步骤2. 将INIT* 端子接地。

步骤3. 打开电源

步骤4. 以9600bps发送指令\$002(cr) 来读取存储在模块EEPROM 中的配置信息。

3.2 指示灯状态

等待:绿灯亮,接收:绿灯闪, 发送:红灯闪,

看门狗溢出:红灯亮。

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504

电传:(010)63331035--37 网址: http://www.sa68.com

3.3 双重看门狗操作

双重看门狗= 模块看门狗+主看门狗

模块看门狗是模块的硬件复位电路,可用来监控模块的操作状态。当工作在恶劣或噪声严重的不良环境中,模块将会被外部信号干扰。该电路将会使模块及时复位以继续工作并且永不停止。

主看门狗是模块内软件实现的看门狗,用来监控主机操作状态。它的目的是预防网络上的通信故障或主机死机。当其溢出时,模块红灯长亮提示。这可以预防控制对象免受不可预料的情况影响。

拥有双重看门狗的R4000模块可以使控制系统变得更加稳定可靠。户 必须通过指令复位模块状态,才能回到正常操作。

北京捷麦通信器材有限公司 地址:北京市丰台区菜户营东街甲 88 号鹏润家园静苑 B 座 2504